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Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms.
The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial
biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-depen-
dent bacterial biofilm formation mechanisms.

Chronic infections are commonly associated with biofilms
formed by staphylococci such as Staphylococcus aureus and

Staphylococcus epidermidis (1). Staphylococcal biofilm formation
involves a number of steps: first, the attachment of bacteria to a
biomaterial surface via cell wall-associated adhesins (2), followed
by their accumulation to a multibacterial layer. S. aureus and
S. epidermidis use several different intercellular adhesive mecha-
nisms, such as the polysaccharide intercellular adhesin (PIA), also
termed polymeric N-acetylglucosamine (PNAG), which is synthe-
sized by the icaADBC locus, to accumulate and form biofilms
(3–6); proteinaceous factors independent of icaADBC and PIA
have emerged as alternatives and include surface protein G (SasG)
(7) and biofilm-associated protein (Bap) (8) in S. aureus and the
accumulation-associated protein (Aap; homolog to SasG) (9)
and extracellular matrix binding protein (Embp) (10) in S. epi-
dermidis.

Lucilia sericata larvae (maggots) have been applied to
chronic wounds for centuries, and sterile maggots have been
shown to effectively debride necrotic tissue (11) and disinfect
wounds (12) and are also reputed to influence healing (13, 14).
Components of maggot secretions that aid debridement, such
as metalloproteases, serine-proteases, and aspartyl compounds
(15), that have antibacterial activities (16–18), and which may
assist healing (19, 20) have been identified. Specifically of in-
terest to this present study is the isolation from excretions/
secretions (ES) of a chymotrypsin-like proteinase (15), which,
as a recombinant enzyme, effectively degrades wound eschar ex
vivo (21, 22). Thus, we studied the potential of this recombi-
nant chymotrypsin (rChymotrypsin) to interfere with staphy-
lococcal biofilms. This was facilitated by the availability of clinically
important biofilm-forming S. aureus and S. epidermidis strains that
employ either PIA (3, 23) or proteinaceous adhesins such as Aap/
SasG (7, 9) for biofilm formation.

The previously described semiquantitative adherence assay us-
ing 96-well tissue culture plates (Nunc, United Kingdom) was
used to measure attachment and accumulation of S. epidermidis
1457 (icaADBC and PIA positive) (23) and 5179-R1 (Aap positive
and icaADBC negative) (9) and S. aureus SA113 (ATCC 35556;
icaADBC, PIA, and SasG positive) (3, 7, 24) biofilms on the plastic
surface in the presence of 0.1, 1, or 10 �g/ml rChymotrypsin (12,
18, 23). No rChymotrypsin was added to the control wells.
rChymotrypsin was prepared and tested as previously described

(21, 22) and had a specific activity of 10.1 pmol/min/mg (22). Data
were analyzed using a one-way analysis of variance (ANOVA)
with Tukey’s test and with the level of significance set at a P value
of �0.05. All experiments were performed three times, each time
in triplicate (n � 9).

The greatest effect of rChymotrypsin on both nascent and pre-
formed biofilms was seen on S. epidermidis 5179-R1, with less of
an effect on S. epidermidis 1457 and S. aureus SA113 (Fig. 1).
Nascent S. epidermidis 1457 biofilm formation was inhibited by 20
to 33% by 0.1 to 10 �g/ml rChymotrypsin compared to that of the
control (Fig. 1a), while a disruption of 11 to 51% was observed on
the preformed biofilms (Fig. 1b). The effect of rChymotrypsin was
not significant on either the nascent or preformed S. epidermidis
1457 biofilms. In the case of S. epidermidis 5179-R1, a significant
decrease of 69 to 72% in nascent biofilm formation was observed
(Fig. 1a), while rChymotrypsin disrupted preformed biofilms by 6
to 77%, with a significant difference between 10 �g/ml and the
control and 0.1 �g/ml (Fig. 1b). The results for S. aureus SA113
were more variable. A significant decrease of 32 to 61% was
seen when nascent biofilms were exposed to 1 and 10 �g/ml
rChymotrypsin (Fig. 1a), while no effect was seen with 0.1 �g/ml
of rChymotrypsin. On S. aureus SA113 preformed biofilms, an 11
to 51% disruption in biofilm, which was not a significant change
from the biofilm formation of the control, was observed (Fig. 1b).

To visualize the effect of rChymotrypsin on the staphylo-
coccal biofilms, light microscopy was used (Fig. 2) (18).
rChymotrypsin clearly disrupted S. epidermidis 5179-R1 and S.
aureus SA113 biofilms (Fig. 2f and 2j); the effect was not so
apparent on S. epidermidis 1457 (Fig. 2b). To support the hy-
pothesis that the cell-cell adhesion disruptions observed were
due to the proteolytic activity of rChymotrypsin, the respective
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biofilms were exposed to sodium meta-periodate and protein-
ase K, chemicals known to disintegrate the intercellular
adhesins PIA/PNAG and Aap/SasG employed by S. epidermidis
and S. aureus (3, 7, 9, 23). Results showed similar disruption of
cell aggregates to rChymotrypsin (Fig. 2), specifically on S.
epidermidis 5179-R1, which is Aap dependent.

Aap is a cell wall-associated protein comprising an A domain
and a repetitive B domain. The intercellular adhesive properties of
Aap are located in the N-terminal domain B, which becomes ac-
tive only after the A domain has been proteolytically cleaved by an
endogenous staphylococcal protease or an exogenous host pro-
tease (9). Rohde et al. showed that different proteases can either
encourage or inhibit Aap-mediated biofilm formation by S.
epidermidis 5179-R1 in a dose-dependent manner (9). Thus,
rChymotrypsin may affect the proteolytic processing mechanism
of Aap in nascent S. epidermidis 5179-R1, which is essential for the
activation and mediation of intercellular adhesion and biofilm for-
mation. Alternatively, with preformed biofilms, rChymotrypsin may
affect Aap activity by cleaving the Aap peptide bonds as observed with

proteinase K (9). The exact influence of rChymotrypsin on Aap is
under investigation, as is the reversible nature of its effect. The fact
that rChymotrypsin works only on the proteinaceous-adhesin-de-
pendent strains and the fact that different clinical staphylococci, in
particular, PIA-dependent S. epidermidis strains and an S. aureus
strain, use a polysaccharide and/or proteinaceous biofilm-forming
mechanism suggest that chymotrypsin is unlikely to represent a
standalone agent. Work is also under way to study the effect of
rChymotrypsin on a range of clinical S. epidermidis and S. aureus
isolates, including methicillin-resistant S. aureus and other clinically
relevant staphylococci.

In conclusion, our study has clearly demonstrated that maggot
rChymotrypsin can interfere with bacterial adhesion, adding fur-
ther to our understanding of the way maggots exert their antibac-
terial effects. Clearly, protein adhesins are not the only mechanism
used by bacteria to adhere to wound tissue, and we believe that
maggots attack bacterial adhesins in vivo by secreting a repertoire
of bioactive antibiofilm agents, of which chymotrypsin is one key
component.

FIG 1 Effect of rChymotrypsin on nascent S. epidermidis 1457 and 5179-R1 and S. aureus SA113 biofilms (a) and preformed S. epidermidis 1457 and 5179-R1
and S. aureus SA113 biofilms (b). Significant effects were seen on nascent S. epidermidis 5179-R1 and S. aureus SA113 biofilm formation (*, P � 0.05), but on the
preformed biofilms, rChymotrypsin had a significant effect only on S. epidermidis 5179-R1 (*, P � 0.05). OD550, optical density at 550 nm. Error bars indicate
the standard errors of the means.

FIG 2 Light-microscopy images showing the effect of rChymotrypsin, proteinase K, and sodium meta-periodate on preformed S. epidermidis 1457 (a to d), S.
epidermidis 5179-R1 (e to h), and S. aureus SA113 (i to l) biofilms. (a, e, and i) Untreated bacteria, controls; (b, f, and j) 10 �g/ml rChymotrypsin; (c, g, and k)
proteinase K; (d, h, and l) sodium meta-periodate. Bar � 10 �m.
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